<u>ANDHRA UNIVERSITY ENTRANCE EXAM PAPER – 2008</u>

Time: 75 Min Max. Marks: 90

PART - A

1.	When the distance between two equal charges is decreased to half and their magnitude of charge also deceased to half, the force between them a) Reduces to half b) becomes double c) becomes four times d) remains uncl	[]
2.	The electric field intensity of an infinite long charge line varies inversely proportion a) square of the distance from it b) distance from it c) square root of the distance from it d) cube of the distance from it	nal the []
3.	In a charged bubble the mechanical force due to charge is counter balanced by a) Force of gravitation b) Viscosity c) surface tension d) none of these	[
4.	The dimensions of potential are same as that of a) work b)Electric field c) Work per unit charge d) Force per unit c	harge]
5.	Electric field lines and equipotential lines are a) always orthogonal b) orthogonal only when electric field is unifo c) orthogonal when potential does not change d) none of these	rm []
6.	Which of the following statement is correct a) Dielectric constant and permeability are the same b) Permittivity and permeability are one and same thing c) Dielectric constant and relative permittivity d) permeability and the relative permittivity	[]
7.	The effect of the dielectric is to a) increase the capacitance c) reduce the working voltage b) decrease the capacitance d)increase the distance between plates	[]
8.	The electric susceptibility of a material is $36 \times 10^{-12} \text{C/N-m}^2$. Calculate the value of absolute permittivity of the material (Take $\varepsilon_0 = 9 \times 10^{-12} \text{F/m}$) a) $4.5 \times 10^{-12} \text{F/m}$ b) $4.5 \times 10^{-11} \text{F/m}$ c) $4.5 \times 10^{-10} \text{F/m}$ d) $4.5 \times 10^{-9} \text{F/m}$	[]
9.	The unit of displacement (D) is a) V/m ² b) coul/m ² c) V/m d)coul/m	[]
10.	The capacity of a capacitor is influenced by a) area of the plates, thickness of the plates and the rate of charge b) area of the plates, dielectric and the rate of charge c) distance between the plates, dielectric and thickness of the plates d) distance between the plates, area of the plates and dielectric	[]
11.	To increase the capacitance of a capacitor, the plates must be placed a) Further apart b) closer together c) in series d) none of these	[]
12.	The capacity of a parallel plate condenser is 0.2 μ F. Potential difference between t plates is 2 volts. Calculate the energy stored by the charged condenser a) 0.4 x 10 ⁻⁵ joule b) 0.4 x 10 ⁻⁶ joule c) 0.4 x 10 ⁻⁷ joule d) 0.4 x 10 ⁻⁸ joule	he []
13.	If the direction of the linear motion of a cork screw represents the direction of curre through the conductor, the direction of rotation of cork screw gives the direction of magnetic field. This was stated by a) Lenz b) Amper c) Maxwell d) Farad	[]

<u>Page – 2</u>

14.	In a strong magnetic the electron	ic field an electron is injected at rest. The force immediately actin			г	
	a) Infinitie	b) Very large	c) very small	d) zero	L J	
15.	If two conductors carra) repel each other c) not experience force	ry current in opposite of the between them	directions these will b) attract each other d) none of these		[]	
16.		agnetic shell is equiva b) capacitance c) curr		noment	[]	
17.	field induction B at the	cm in diameter carries he surface of the wire.	•	e. Find the magnetic		
		stant ($\mu_0 = 4\pi \times 10^{-7}$ y b) 7.87×10^{-3} w/m ²		d) 4.39 x 10 ⁻³ w/m ²		
18.	The ratio of the intens at the extreme end is	sity of magnetic field a	at the centre of a very	long solenoid to that	[]	
	a) 2	b)1/2	c) 4	d) ½		
19.	a) The period of osci	_	b) The period of osc	sillation should be small sillation should be infin		
20.	The polarity of dees is (mass of proton is 1.6	$7 \times 10^{-27} \text{ kg}$	mes/sec. Find the ener	gy of the issuing protor	n []	
	a) $29.63 \times 10^2 \text{ eV}$	b) 29.63 x 10 ⁴ eV	c) $29.63 \times 10^6 \text{ eV}$	d) 29.63 x 10 ⁶ eV		
21.	A copper strip 2 cm wide and 1mm thick is placed in a magnetic field with $B = 1.5 \text{ wb/m}^2$ with its thickness parallel to B. If a current of 200 amp is set up in the strip, what Hall potential is developed across the strip. The number of conduction electrons in the copper					
	strip is 8.4 x 10 ²⁸ /m ³ a) 2.75 x 10 ⁻⁵ volt	b) 2.55 x 10 ⁻⁵ volt	c) 2.73 x 10 ⁻⁵ volt	d) 2.23 x 10 ⁻⁵ volt	[]	
22.	Betatron condition ϕ_B a) $2\pi r^2 B$	b) $2\pi r^2 B/r^2$	c) $2\pi r^2/B$	d) $Br^2/2\pi$	[]	
23.	Calculate the self inauctance of a solenoid of length 1 meter and area of cross-section 0.01sq.m with 2000 turns.					
	a) 60.8mH	b) 39.7mH	c) 50.3mH	d) 80.3mH	[]	
24.	a maximum current o	stored in the magnetic of 3amp flows through	it		[]	
		b) 22.5 x 10 ⁻³ joule	c) 22.5 x 10 ³ joule	d) 22.5 x 10°joule	_	
25.	One henry is a) Volt/amp/sec	b) Coul/sec ²	c) wb-sec	d) wb/amp ²	[]	
26.	When co-efficient of a) there is no coupling c) there is optimum co	g between the coils	b) the coupling is tig d) There is leakage f		[]	
27.	A $(20/\pi) \mu$ F capacifrequency of discharge	itor is discharged througe	agh a (50/ π)mH induc	ctor. Compute the	[]	
28.	a) 200 cycles/sec In parallel resonant ci	b) 300 cycles/sec reuit, current at resona	c) 400 cycles/sec	d) 500 cycles/sec	[]	
	a) minimum	b) maximum	c) infinite	d) zero	r J	
29.		nce 50 Henry and resistime constant and maxib) 0.4sec, 0.05 amp	imum current.	n series to a 2 volt o d) 0.2sec, 0.05 amp	[]	

<u>Page - 3</u>

30.	a) leads the current b c)In phase with the c	y 90 ⁰ b)	s the capacitor lags behind the current be Opposite to the current	y 90 ⁰	l	J
31.	The differential form a)curl $B = \mu_0 i$	-	$\operatorname{curl} \mathbf{B} = \mu_0 \left(\mathbf{j} + \frac{\partial D}{\partial t} \right)$	d)div B = $\frac{\partial D}{\partial t}$	[]
32.	The electromagnetic a) $\nabla^2 B = -\mu \varepsilon \partial E^2 / \partial E^2$		$\mathbf{B}^2 / \partial t^2 \mathbf{c}) \nabla^2 E = -\mu \varepsilon \partial \mathbf{B}$	$\nabla^2 / \partial t^2$ d) $\nabla^2 \mathbf{B} = \mu \varepsilon \delta$	$[$ $\partial^2 \mathbf{B}/\partial t^2$]
33.	Poyinting vector is a) E x H	b)E x B	c) E x D	d) E x E]
34.	Calculate its common a) 0.996	b) 0.995	gain. c)0.998	d) 0.997]
35.	The heavy doping pro a) The reverse breake c) The width of deple	lown voltage incre	ases b) The width of d	epletion layer is infine eakdown voltage decr]
36.	A certain transistor h of 1 μ A .Calculate co		a collector leakage current en $I_E = 1 \text{ mA}$	nt I _{co}		[
	a) 0.709mA	b) 0.534mA	c) 0.981mA	d) 0.257mA		
37.	The advantage of neg a) Increases the band c) Increases the gain	width of the ampli	ifier b) Decreases the ing d) Increases the out	put impedance of the aput impedance of the	-]
38.	The ripple factor of f a)0.48		c) 8.12	d) 4.06	[]
39.	Find the binary equivalent a)100100000	ralent of 786 b)1010110000	c)1100010010	d)1001001011	[]
40.	De Morgan's second a) $\overline{A+B} = \overline{A}.\overline{B}$	theorem b) $\overline{A}.\overline{B} = \overline{A.B}$	c) $\overline{A} + \overline{B} = \overline{A + B}$	d) $\overline{A.B} = \overline{A} + \overline{B}$	[]

PART - B

41.	The coefficient of viscosity is				
	a) $\eta \alpha \sqrt{2}T$ b) $\eta \alpha \sqrt{T}$ c) $\eta \alpha \sqrt{3}T$ d) $\eta \alpha \frac{1}{\sqrt{T}}$				
42.	The R.M.S. velocity of hydrogen at N.T.P is a) 1.85×10^5 cm/sec b) 18.5×10^5 cm/sec c) 1.85×10^6 cm/sec d) 18.5×10^6 cm/sec	[]		
43.	How much work must be supplied to transfer 1000 joules of heat from a cold reservoir at -73°C to a hot reservoir at 27°C by means of a refrigerator a) 250 J b) 400 J c) 500 J d) 650 J	[]		
44.	In free expansion entropy a) decreases b) increases c) Zero d) no change				
45.	The sudden and fast stretching of a spring is called a) isothermal b) adiabatic c) reversible process d)irreversible process	[ss]		
46.	In Isobaric & Isochoric processquantities are constants respectively. a) volume & pressure b) pressure & volume c) Temp & heat d) heat & Temp	[]		
47.	Calculate the temperature of inversion of Helium gas given $a=3.44X10^{-3} \text{ Nt-m}^4/\text{mol}^2$ $b=0.0237X10^{-3} \text{ m}^3/\text{mol}$	[]		
48.	R=8.31 Joul / (mol-k) a) 238°C b) 138°C c) -138°C d) -238°C In the refrigerator, which of the following statement about the refrigerant is incorrect? a) It should be non-flamble b) It should be liquid at normal temperatre and pressure c) It should have high themal conductivity d) It should have low freezing point	[]		
49.	The critical temperature of helium is a) -268°C b) -258°C c) -248°C d) -238°C	[]		
50.	What is the temperature of the sun, if the wien's constant is 2.85 x 10 ⁻³ M.K.S. units and the wavelength corresponding to maximum emission is 4753 A.U. a) 5.995 ⁰ K b) 59.95 ⁰ K c) 599.5 ⁰ K d) 5995 ⁰ K	l []		
51.	Calculate the surface temperature of the sun from the following data: solar constant $S=1340 \text{ watt/m}^2$, radius of sun $R=6.92 \times 10^8 \text{ m}$, distance of sun from earth $r=1.5 \times 10^{11} \text{ m}$, Stefan's constant $\sigma=5.67 \times \text{w/m}^2/\text{k}^4$ a) 6000^0 b) 5773^0k c) 4897^0k d) 7938^0k	[]		
50.	In optical or spectral pyrometers, the temperature of the body can be calculated by using the formula, a) Raleigh-Jeans formula b) Kirchoff's law c) Stetan's law d) Plank's law	g []		
53.	Application of Fermi-Dirac distribution law a) Election gas b) Photon gas c) Ideas gas d) None of these	[]		
54.	Bose-Einstein's distribution law applies to a) distinguishable, identical, integral spin c) indistinguishable, identical, integral spin d) indistinguishable, identical, zero spin	[pin]		
55.	Find the focal length for a lens placed in air and made of glass of refractive index 1.5 and radius of curvature 50 cm each	[]		
56.	a) 10 cm b) 25 cm c) 50 cm d) 100 cm Two thin converging lenses of powers 5 diopters and 4 diopters are placed co-axially 10cm apart. Find the focal length of the combination. a) 14.3 m b) 14.3 cm c) 1.43 m d) 1.43 cm	[]		
57.	Find the focal lengths of two lenses of crown and fling glasses with dispersive powers				

	0.015 and 0.025 respectively in order to make an achromatic converging lens of focal lengths 25 cm]
	a) 10 cm, -16.7 cm	b) 25 cm, -20 cm	c) 12.2 cm, -30 cm	d)10 cm, -25 cm	L	J
58.	The deviation produce a) proportional to the f c) inversely proportion	focal length	/ I	are of the focal length nal to square of the fo] gth
59.	The condition for minimum lens of focal length f_1 and f_2 and f_3 and f_4 and f_4 and f_5 are f_6 and f_6 and f_7 are f_7 and f_8 are f_8 f_8 are f_8 are f_8 are f_8 are f_8 and f_8 are f_8 are f_8 are f_8 are f_8 are f_8 and f_8 are f_8 and f_8 are f_8 and f_8 are f_8 are f_8 are f_8 and f_8 are f_8 are f_8 are f_8 are f_8 are f_8 and f_8 are f_8 ar			to thin planoconvex d) $d = f_1 - f_2$	[]
60.	Light passes through n the distance between the light used				Г	1
	a) 8000 A ⁰	b) 8340 A ⁰	c) 8560 A^0	d) 8734 A ⁰		J
61.	In the Newton's ring e dark, then the radius of $\sqrt{2R}$	of first dark ring	·		[]
		,	c) $\sqrt{2\lambda R}$	d) $\sqrt{3\lambda R}$		
62.	will make it appear da	=1.6) on water. Calculark	late the smallest thickn	ess of the film which	[]
	a) 1938 x 10 ⁻¹⁰ cm	b) 19.38 x 10 ⁻¹⁰ cm	c) 1938 x 10 ⁻⁸ cm d	1)1938 x 10 ⁻⁸ m		
63.	In diffraction pattern fa a) equal	•	s fringes is or may not equal	d) never equal	[]
64.	Find the number of lines per cm in a diffraction grating, if a green line of mercury of wave length 5460^{0} A is seen in the first order spectrum at an angle of $19^{0}8^{1}$. The grating is receiving light at normal incidence ($\sin 19^{0}8^{1}$ =0.3278) a) 6000 b) 6002 c) 6004 d) 6006]
65.	Zone plate shows	0) 0002	9,3,0	4,000	[]
03.	a) spherical aberrationc) monochromatic abe		b) coma d) chromatic aberration	on	L	J
66.	Calculate the thinkness of a half wave plate of quartz, to be used with sodium light $\lambda = 5893 \text{ A}^0$, $\mu_0 = 1.544$ and $\mu_e = 1.533$.]
	a) 2.67 x 10 ⁻⁸ cm	b) 2.67 x 10 ⁻³ cm	c) 2.67 x 10 ⁻⁷ cm	d) 2.67 x 10 ⁻⁵ cm		
67.			decimeter per gm/c.c. concentration of the so c) 3.273 gm/c.c.		[]
68.	In tourmaline crystal a) ellipsoid lies outside c) ellipsoid and sphere	-	b) sphere lies outside d) none of these	the ellipsoid	[]
69.	Among the terminolog a) Coherent light c) Interference fringes	gy, which term is not r	related to Holography b) wave front construct d) Fixed focus	ction	[]
70.	Lasers can be used to i a) coherence	improve the storage cab) high intensity	apacity in the computer c) narrow band width		[]

PART – C

/1.	a) 0	b) 1	c) 2	d) 3	Ĺ	J
72.	•	is a vector, then div (a) ϕ curl A c) ϕ curl A	•	ϕ div A + A . grad ϕ	[]
73.		kg has 180 kg fuel. The am rate of consumption	•		[]
	a) 1225 kg/s	b) 122.5 kg/s	c) 12.25 kg/s	d) 1.225 kg/s		
74.	When the external to a) the angular momen c) the angular momen	ntum increases	b) the angular mome d) the angular mome			1
75.	The rate of precession a) angular momentum	n of spinning top is in b) angle	versely proportional to c) mass	the d) torque	[]
76.		angular momentum of		volutions per second is d) 6.758 kg/m ² /sec ²	[]
77.	Curl of a conservativ a) F	e force (F) b) F ²	c) 1/F	d) 0	[]
78.	In kepler's first law, a) circle	If $\varepsilon > 1$ then orbit is b) parabola	c) hyperbola	d) ellipse	[]
79.	Calculate the poisson rigidity modulus 8 x a) 0.25	's ratio for steel given 10^{10} pa b) 25	that young's modulus c) 250	is 2 x 10 ¹¹ pascal and d) 2500	[]
80.	In following answers a) finite	which is not limitation b) single valued	ns of Fourier's theoren c) continuous	n d) discontinuous	[]
81.	-	an proper lifetime of 2 plate its life time as mea b) 4.58 x 10 ⁻⁸ sec	_	•	[]
82.	When a particle exec a) Max. P.E and Min c) Min. P.E and Max		ough its extreme position b) Max. P.E and Mar d) Min. P.E and Min	n. K.E	[]
83.		kg hangs from a spring shorten when the body b) 0.89 mm	-	period of 0.6 sec. How d) 8.9 cm	[]
84.	- ·	a sonometer wire is 2 x the time in which amp b) 184.0 sec			[]

85.	In the case of critical a $b^2 > \omega^2$	cal damping b) $b^2 = \omega^2$	c) $b^2 < \omega^2$	d) $b^2 + \omega^2 = 0$	L	-
86.	The ratio of transve a) Resistance	erse force and transvers b) Capacitance	se velocity of a string i c) Impedance	s equal to d) Quality factor	[]
87.	If the energy flow a) stationary wave			ion of the wave, then it i wave d) none of the abo]
88.	In a coupled pend mode is	ulum, the phase angle l	between the two pendo	ulums in the first normal	I [
	a) 0 ⁰	b) 90 ⁰	c) 180^0	d) 270 ⁰		
89.	Calculate the capa of 1 Hendry	citance to produce ul	Itrasonic waves of 10	0 ⁶ Hz with an inductance	ē [7
	a) 25 μ F	b) $0.25 \mu{\rm F}$	c) $0.025 \ \mu \text{F}$	d) 2.5 μF	L	_
90.	The speed of prop a) amplitude	agation of ultra Sonics b) frequency	depends upon their c) energy	d) phase	[]
				4		
			C			
			5			
		•				
			,			
		O y				